
Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Development of a payment channel over the Bitcoin
network

Final degree project

David Lozano Jarque <bitcoin@davidlj95.com>

5th July 2017



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Outline

1 Introduction
What is Bitcoin
How does Bitcoin work?
The scalability problem

2 Bitcoin & Smart Contracts
Transactions at low-level detail
Bitcoin’s scripting language
What is a payment channel?
Unidirectional payment channels

3 Bidirectional payment channels
Scheme
Implementation
Problem: channel reseting

4 The Bitcoin framework
5 Conclusions



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Bitcoin’s appearance

The creator
Satoshi Nakamoto @ Cryptography (metzdowd.com)
November 1st, 2008

metzdowd.com


Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Bitcoin’s definition

Definition of Bitcoin
P2P network that allows payments between users without a trusted
third party

Features
Public ledger of transactions
Public ledger using blockchain technology
Consensus via proof-of-work algorithm
Cryptography-enforced (digital ECDSA signatures & hash
functions)
No trusted 3rd party (Pure P2P)



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

How do we move currency?



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Transactions

What is a Bitcoin transaction?
Message specifying the transfer of currency units (called bitcoins)

Transaction fields
A transaction moves currency units given an input to a new output

version

inputs

outputs

locktime

Basic Bitcoin transaction



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Where do we store transactions?



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Blocks

What is a Bitcoin block?
Collection of transactions

Basic Bitcoin block



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Where do we store blocks?



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Blockchain

Bitcoin’s blockchain
Distributed and replicated database containing a collection of
blocks, each one linked to the previous one using their hashes
forming a chain

Basic Bitcoin’s blockchain



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Blockchain

Rewards
Appending a new block to the chain is rewarded with newly
generated currency units with a no-input transaction called a
generation transaction



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Who decides who can create next block?



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Consensus

Proof-of-work
Piece of data difficult to generate but easy to verify it meets certain
requirements

Bitcoin’s proof-of-work
Field in block’s header must contain a hash of the block itself
whose value is less than a dynamically adjusted value



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Proof-of-work

Basic Bitcoin’s blockchain + proof-of-work



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

How to handle everything?



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

The Bitcoin client

A Bitcoin client
Software that allows to operate on the Bitcoin network, handling all
data structures and network messages

Features
1 Receive and broadcasts messages (transactions, blocks, ...)
2 Stores and shares the blockchain
3 Handles keys and creates payment transactions

*Feature (2) just in full-nodes

Most used client
Bitcoin Core (bitcoin.org) is the most used Bitcoin client (85%
of nodes in the network)

bitcoin.org


Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

What is the limit of the technology?



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Transaction throughput

Throughput limits
Because of the protocol, blocks must

1 Appear every 10 minutes (approximately) due to
proof-of-work difficulty adjustment

2 1MB maximum block size to control the blockchain growth
rate



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Transaction throughput

Increasing transaction demand
As Bitcoin becomes more popular, more users arrive therefore more
transactions need to be processed



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Transaction throughput

Transactions per block over time (tx amount/years)

Approximately 2.000 transactions per block



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Transaction throughput

Bitcoin’s transaction throughput
Using previous information:

2.000 tx

1 block
× 1 block

10 minutes
× 1 minute

60 sec .
≈

3 transactions per second

VISA’s transaction throughput
According to an IBM’s studio performed in August of 2010:

24.000 transactions per second



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

What can we do?



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Scalability solutions

Several solutions have been proposed:

1 Increase block size: Bitcoin Unlimited (1 to 8 MB)
2 Reduce transaction size: SegWit.co (do not store

transaction signatures, also fixes malleability issues)
3 Decrease the demand of transactions: Payment channels

SegWit.co


Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Outline

1 Introduction
What is Bitcoin
How does Bitcoin work?
The scalability problem

2 Bitcoin & Smart Contracts
Transactions at low-level detail
Bitcoin’s scripting language
What is a payment channel?
Unidirectional payment channels

3 Bidirectional payment channels
Scheme
Implementation
Problem: channel reseting

4 The Bitcoin framework
5 Conclusions



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Transactions

Transaction fields
Fields of a transaction are:

version

inputs

outputs

locktime

Basic Bitcoin transaction



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Transactions

Extra "fields"
All transactions have an id (also called txId), that is the double
SHA-256 hash of the transaction bytes



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

How are inputs and outputs specified?



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Inputs specification

Input fields
An input consists of the following fields:

1 previousOutput*: An output to be spent (combination of a
txId and output number)

2 scriptSig: Script necessary to authorize the output spend
3 sequence: Number of the transaction in order to enable

replacements
* output must not be spent by any other transaction (also called
UTXO)



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Inputs specification

Basic transaction’s input’s fields



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Outputs specification

Output fields
An output consists of the following fields:

1 value: number of currency units to be sent to the output
2 scriptPubKey: Script specificating the conditions for the

output to be spent

Basic transaction’s output’s fields



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

How do the scripts work?



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Bitcoin’s scripting

Bitcoin scripting language

Specificic scripting language for Bitcoin protocol (in transactions)
Simple
Stack-based (processed from left to right)
Purposefully not Turing-complete (with no loops)

Technically
Sequentially read 1-byte opcodes that can perform arithmetical
operations, store data into the stack, cryptographic operations and
some logic and flow control operations



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Transactions and scripts

Transactions validity
In order for a transaction to be valid it must:

1 Valid inputs: Inputs must refer to existing and non-spent
outputs (UTXO)

2 Valid amounts: Outputs’ amounts must be less or equal to
the inputs amounts

3 Valid scripts: The input script followed by the output script
referred by the input must execute succesfully and leave a
non-empty stack



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Standard scripts: P2PKH

P2PKH: pay-to-public-key-hash

The output script (scriptPubKey) requires the input script
(scriptSig) to specify a public key whose hash matches the
specified and sign the spending transaction with that public key

P2PKH sample
scriptSig: <signature> <pubKey>

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash>
OP_EQUALVERIFY OP_CHECKSIG



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Standard scripts: P2SH

P2SH: pay-to-script-hash

The output script (scriptPubKey) requires the input script
(scriptSig) to specify a redeem script that succesfully executes
and whose hash matches the specified one

P2SH sample
scriptSig: [<data>] <redeemScript>

scriptPubKey: OP_HASH160 <redeemScript_hash>
OP_EQUAL



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Smart Contracts

Smart Contracts
Computer protocols intended to facilitate, verify or enforce the
negotiation or performance of a contract

Smart Contracts in Bitcoin
Creation of redeemScripts redeemable using P2SH script sets in
transactions.

redeemScripts are Bitcoin’s smart contracts



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

What can we do with Smart Contracts?

Payment channels



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

What is a Payment channel?

Payment channel
Set of techniques designed to allow users to make multiple Bitcoin
transactions without commiting all of them to the Bitcoin block
chain

Off-chain transactions
Bitcoin transactions that are not commited to the Bitcoin
blockchain but would be valid if they were commited



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Payment Channel basic scheme

Scheme
All payment channels follow a basic scheme:

1 Funding: Some funds are locked so they can be moved with
payments during the channel operation

2 Payment: Locked funds are moved to pay to a party of the
channel

3 Closure: Funds are unlocked and returned to the channel
parties with the final balance after all payments

Which transactions are off-chain?
All payment transactions are off-chain



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

What does a unidirectional payment channel allows us to do?
Incrementally pay amounts of funds from one party to another

For instance...
We will create a channel to allow Alice pay Bob incremental
amounts of funds



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Locking funds

What do we need to do?
Lock funds into the channel so:

1 Both must authorize a payment:
Alice must want to pay some amount to Bob (Bob can not pay
hisself)
Bob must authorize payments in order to check funds are send
to him (and not to Alice)

2 Refunds must be possible if a party does not cooperate

How to refund
Lock the funds for an amount of time, so after that time (called
the channel expiry time) the funds are given back to the funder



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Paying funds

What do we need to do?
In order to create a payment transaction, as both users must
authorize payments:

1 Alice creates and signs a transaction paying some of the
locked funds to Bob (and the rest to Alice as return)

2 Bob stores the partially signed transaction that pays some
amount of money to him

3 If Alice wants to pay more, repeats the first step with more
funds (spending the same funding transaction)

Replace by economical incentive
Bob will keep the latest payment transaction and discard
previous ones, as the last will be the one that pays more to him



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Closure

What do we need to do?
Two situations can appear when closing the channel:

1 Graceful closure: the channel has been operated and the
expiry time is close, so latest payment transaction is
broadcasted, spending the funding transaction and closing
the channel.

2 No cooperation: if Bob disappears, Alice will broadcast a
refund transaction to recover the locked funds



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Funding transaction

Funding transaction



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Funding transaction

Funding smart contract
As we said, we need to design a redeemScript in order to create a
Bitcoin smart contract:

OP_IF <time>
OP_CHECKLOCKTIMEVERIFY OP_DROP
<PubKeyAlice_1> OP_CHECKSIG

OP_ELSE
OP_2 <PubKeyAlice_2> <PubKeyBob> OP_2 OP_CHECKMULTISIG

OP_ENDIF

Technically...
As we are creating a P2SH, then the output script must be:

OP_HASH160 <redeemScript_hash> OP_EQUAL



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Payment transaction

Payment transaction



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Payment transaction

Spending funding smart contract
We now need to spend the redeemScript

OP_0 <sig_Alice> <sig_Bob> OP_0

Technically...
As we are spending a P2SH, then the input script must be:

OP_0 <sig_Alice> <sig_Bob> OP_0 <redeemScript>



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Closure transaction

Closure transaction (refund)



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Closure transaction

Spending funding smart contract (refund)

We now need to spend the redeemScript after the lock time

<sig_Alice> OP_1

Technically...
As we are spending a P2SH, then the input script must be:

<sig_Alice> OP_1 <redeemScript>



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

What if we want Bob to pay Alice too?



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Outline

1 Introduction
What is Bitcoin
How does Bitcoin work?
The scalability problem

2 Bitcoin & Smart Contracts
Transactions at low-level detail
Bitcoin’s scripting language
What is a payment channel?
Unidirectional payment channels

3 Bidirectional payment channels
Scheme
Implementation
Problem: channel reseting

4 The Bitcoin framework
5 Conclusions



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Bidirectional payment channel

What allows to do?
Incrementally pay amounts of funds from one party to another and
viceversa

For instance...
We will create a channel to allow Alice pay Bob incremental
amounts of funds and viceversa



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Bidirectional payment channels’ scheme

Source
Obtained from

A Fast and Scalable Payment Network with Bitcoin
Duplex Micropayment Channels - Christian Decker &
Roger Wattenhofer

Idea
Use two unidirectional channels, one in each way with an
invalidation tree to perform resets



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Locking the funds

Ways to lock funds
In order to accomplish both properties to lock funds, we can:

1 Create a funding transaction and a time-locked refund
transaction

2 Create a smart funding transaction with the time-lock
integrated in the smart contract

The implementation
We can still use BIP-65 to create a time-locking smart contract



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Funding transaction

Funding transaction



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Funding transaction

Funding smart contract
Same as unidirectional channel, but with two outputs

1 Alice to Bob output
OP_IF <time> OP_CHECKLOCKTIMEVERIFY OP_DROP
<PubKeyAlice_1> OP_CHECKSIG OP_ELSE OP_2
<PubKeyAlice_2> <PubKeyBob_1> OP_2 OP_CHECKMULTISIG
OP_ENDIF

2 Bob to Alice output
OP_IF <time> OP_CHECKLOCKTIMEVERIFY OP_DROP
<PubKeyBob_2> OP_CHECKSIG OP_ELSE OP_2 <PubKeyAlice_3>
<PubKeyBob_3> OP_2 OP_CHECKMULTISIG OP_ENDIF

Technically...
As we are creating a P2SH, then the outputs’ script must be:

OP_HASH160 <redeemScript_hash> OP_EQUAL



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Paying funds

What do we need to do?
In order to create a payment transaction, as both users must
authorize payments:

1 Alice creates and signs a transaction paying some of the
locked funds to Bob (and the rest to Alice as return)

2 Bob stores the partially signed transaction that pays some
amount of money to him

3 If Alice wants to pay more, repeats the first step with more
funds (spending the same funding transaction)

The implementation
Same of a unidirectional payment channel, but Bob can pay Alice
too using his channel



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Payment transaction

Payment transaction



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Payment transaction

Spending funding smart contract
We now need to spend the redeemScript

1 Alice to Bob output
OP_0 <sig_Alice> <sig_Bob> OP_0

2 Bob to Alice output
OP_0 <sig_Alice> <sig_Bob> OP_0

Technically...
As we are spending a P2SH, then the input script must be:

OP_0 <sig_Alice> <sig_Bob> OP_0 <redeemScript>



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Closure transaction

What do we need to do?
Two situations can appear when closing the channel:

1 Graceful closure: the channel has been operated and the
expiry time is close, so latest payment transaction
of each output is broadcasted, spending the funding
transaction and closing the channel.

2 No cooperation: if any of the parties do not cooperate, they
can broadcast a refund transaction to recover their locked
funds

Graceful closure
Alice and Bob simply broadcast the latest payment transaction
once signed and before channel expiry time



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Closure transaction

Closure transaction (refund)



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Closure transaction

Spending funding smart contract (refund)

We now need to spend the redeemScript after the lock time

1 Alice to Bob output refund
<sig_Alice> OP_1

2 Bob to Alice output refund
<sig_Bob> OP_1

Technically...
As we are spending a P2SH, then the input script must be:

<sig_Alice|Bob> OP_1 <redeemScript>



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

What if one of the payment channels gets exhausted?

Channel resetting



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Channel resetting

A simple reset example



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Channel resetting

Channels are exhausted
Both parties own the same amount of funds as at the beginning of
the channel but their respective payment channels have been
exhausted. No more incremental payments can be performed



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Resetting by invalidation trees

Invalidation tree
Tree of transactions that use the timelock field to invalidate old
branches of the tree and be able to create new ones with an
updated status of the balances

Replace by timelock
Create timelocked transactions so that when using timelocks nearer
to the present invalidate transactions with later timelocks



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

An invalidation tree reset example

Reset by adding a new leaf



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

An invalidation tree reset example

Different funding



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

An invalidation tree reset example

Reset by branching



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Differences

Basic duplex channel vs Resetable duplex channel

More complex to use BIP-65*: As the tree requires linking
P2SH single outputs, using BIP-65 to create a timelock
contract is more complex to implement
*this would require to generate two outputs and inputs in each first
tree node with all data required
More transactions needed: in order to create the tree (be careful
with signing order of all parties to prevent attacks)
Reduced expiry time: each tree branch reduces the channel’s
effective expiry time



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Pros and cons

Pros
Simple to create: no complex transactions needed, unlike the
Lightning Network smart contracts
No extra data exchange: unlike the Lightning Network, the
protocol does not require to exchange secrets or additional
data

Cons
Reducing expiry time: the more resets needed, the more the
effective expiry time is reduced (more invalidating branches
and leafs)
Need to store more transactions: in other solutions for
duplex payment channel, like the Lightning Network, just the
latest payment transaction must be saved, and not an entire
tree.



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Outline

1 Introduction
What is Bitcoin
How does Bitcoin work?
The scalability problem

2 Bitcoin & Smart Contracts
Transactions at low-level detail
Bitcoin’s scripting language
What is a payment channel?
Unidirectional payment channels

3 Bidirectional payment channels
Scheme
Implementation
Problem: channel reseting

4 The Bitcoin framework
5 Conclusions



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Developing problems

Problems when implementing the channel
Lack of documentation: Bitcoin is missing from good
quality, low-level protocol implementation details. Most
accurate information is spread around Q&A sites, Bitcoin Wiki
and Bitcoin Core’s client C++ code
Lack of low-level, documented libraries: There are very
few libraries that handle the Bitcoin protocol complexities (no
library found to create raw transaction signatures with a
customized transaction)



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Our Bitcoin framework

Solution: our own Bitcoin framework
All what we* learned was implemented in our own Bitcoin
framework that has:

Designed for ease of use: Design & Software design patterns
OOP and puzzle-friendliness principles: Modulable and
serializable / deserializable patterns
Extensive documentation: Every method is well documented
Extensively tested: All code has been tested with other
libraries & Bitcoin Core client

*developed along Carlos González Cebrecos



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Channel implementation

Fork of the Bitcoin framework
The channel was implemented in a script after forking the
framework and can be operated from the CLI passing the required
parameters (funds amount, pub/priv keys, previous inputs, ...)

Channel lacks ease of use
Because focused on the channel protocol’s design to enhace
security, no time was missing to automate the operatibility of the
channel:

Bitcoin Core RPC: to automate transaction broadcasting,
UTXO detection, balance detection, fee calculation, ...
Channel state storage: automatically store in the user’s
computer the state of the channel
Graphical UI: enable every Bitcoin user enjoy the payment
channels’ potential



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Outline

1 Introduction
What is Bitcoin
How does Bitcoin work?
The scalability problem

2 Bitcoin & Smart Contracts
Transactions at low-level detail
Bitcoin’s scripting language
What is a payment channel?
Unidirectional payment channels

3 Bidirectional payment channels
Scheme
Implementation
Problem: channel reseting

4 The Bitcoin framework
5 Conclusions



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Along this project, I’ve learned:
Low-level understanding of the Bitcoin protocol
Bitcoin lacks of low-level extensive documentation
Payment Channels are the future of Bitcoin



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Application use

How to use
https://www.davidlj95.com/smart-payment-channel/how-to/



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

Thanks for your time and
attention

Q&A round



Introduction Bitcoin & Smart Contracts Bidirectional payment channels The Bitcoin framework Conclusions

For more information

The project work compilation
Documentation:

https://davidlj95.com/smart-payment-channel
Code:

https://github.com/davidlj95/smart-payment-channel

The Bitcoin framework
https://github.com/uab-projects/btc-payment-channels

Test it!:
pip install bitcoin-framework

https://davidlj95.com/smart-payment-channel
https://github.com/davidlj95/smart-payment-channel
https://github.com/uab-projects/btc-payment-channels

	Introduction
	What is Bitcoin
	How does Bitcoin work?
	The scalability problem

	Bitcoin & Smart Contracts
	Transactions at low-level detail
	Bitcoin's scripting language
	What is a payment channel?
	Unidirectional payment channels

	Bidirectional payment channels
	Scheme
	Implementation
	Problem: channel reseting

	The Bitcoin framework
	Conclusions

