
Escola Tècnica Superior d’Enginyeria

Grau en Enginyeria Informàtica

Final degree project

Bitcoin Payment Channels
Progress report I

Author:
David Lozano Jarque
NIU 1359958
uab@davidlj95.com

Tutor:
Jordi Herrera Joancomartí

Version 0.1
April 8, 2017

Contents

Introduction 5

1.1 Brief summary of the current status . 5

Bitcoin cryptocurrency study 6

2.1 The goals . 6

2.2 The basics about Bitcoin . 6

2.3 Bitcoin low-level understanding . 7

2.4 Transaction low-level understanding . 7

2.5 Script low-level understanding . 8

2.6 Conclusions about the research . 9

The software framework 11

3.1 The goals . 11

3.2 Technologies and environment setup . 11

3.2.1 Libraries . 11

3.2.2 Version control system . 12

3.3 The architecture and design . 12

3.3.1 The serializable interface . 13

3.3.2 The libraries’ use . 13

3.4 A basic transaction creation . 13

Unidirectional payment channel 15

4.1 Understanding a payment channel . 15

4.2 Modelling a unidirectional payment channel 16

1

Contents Progress Report I

4.2.1 Schedule problems . 16

4.2.2 Commitment . 16

Goals revision 18

5.1 Conclusion . 18

Methodology revision 19

6.1 Conclusions . 19

Schedule revision 20

7.1 Changes motivation . 20

7.2 Other minor changes . 20

7.3 Resulting Gantt diagram . 21

List of Figures

2.1 A Bitcoin transaction in low-level, byte detail [1] 8

2.2 Hashmal script editor and executor screenshot 9

7.3 Gantt diagram of the new schedule [February-March] 21

7.4 Gantt diagram of the new schedule [March - April] 22

7.5 Gantt diagram of the new schedule [April - May] 23

7.6 Gantt diagram of the new schedule [May - June] 24

7.7 Gantt diagram of the new schedule [June - end] 25

3

A few notes about this document

Because this first stage of the project was developed along Carlos GC1, another student
that is carrying out a very similar project, the document uses the first person pronouns in
a plural form2. Despite that, and knowing that the final degree project has to be developed
individually, all of the progress achieved has been done in an individual way, so the both
of us have the exact same knowledge about the Bitcoin environment and have researched
the exact same subjects until the writing of the present document and the collaboration
is just to provide each other mutual help to understand the complex details that dealing
with Bitcoin implies.

Also, and due to the complexity of the Bitcoin concept in depth, this document assumes
some basic understanding of the Bitcoin cryptocurrency (despite it can be read by anyone
and transmit the basic idea) and will skip several explanations about the some low-level
details learnt during the project time lapse as the document is intended to provide a global
view of the project development status rather than providing specific details of the tasks
performed that include complex or difficult-to-explain Bitcoin special characteristics.

1Carlos González Cebrecos <carlos.gonzalezce@e-campus.uab.cat> https://www.ccebrecos.com
2The unique author of the document, notwithstanding the text is written in first person plural form, is

exclusively the author that appears on this document’s cover and not anyone else.

4

https://www.ccebrecos.com

Introduction

In this first progress report, we will review the Bitcoin Payment Channels project devel-
opment since the last report, the project initial report, listing the accomplished project
goals and tasks, the changes made to the project planning and the problems and solutions
implemented during this time to acquire and fulfill with success the project’s tasks.

1.1 Brief summary of the current status

In the first place, the project planning changed due to mainly bad timing estimations
(very optimistic timings in most cases), rearranging tasks to reduce complexity and improve
readability and a few changes to improve visualization. Those changes were performed after
the general and low-level Bitcoin cryptocurrency study, assigning more time to the payment
channel transactions modelling and testing because of the lack of good documentation
about the topic found after hours of searching over the network for good information
sources and the time lapse between blocks (approximately 10 minutes [2]) so we can check
if our transactions get accepted by the network consensus. Despite that, the project’s
development schedule has been respected and the project’s goals until this report’s drafting
have been completed with success.

In the following pages, we will give detailed information about all the progress done
withing this time lapse between the first report delivery and this report drafting, the
changes we had to apply to our project schedule and predictions to the project progress
based on our acquired experience.

5

Bitcoin cryptocurrency study

Following our tutor’s recommendation, we started to study the concept and operation of
the Bitcoin cryptocurrency and network using a breadth-first strategy. We started with
the basic concepts (mainly cryptographical tools and techniques) about Bitcoin. Then,
we studied the main concepts and ideas about how transactions are performed, blocks are
created, and consensus is reached at a high level.

Finally, we started to research how all concepts are used in detail, by understanding
the current Bitcoin protocol implementation byte per byte (focusing just on everything
related to transactions, that will allow us to create the payment channels)

2.1 The goals

As the main goal for this stage of study and research, we had to understand at a byte
level how a Bitcoin transaction is constructed, therefore understanding also the Bitcoin
scripting language

2.2 The basics about Bitcoin

To understand how Bitcoin works, we enrolled in a MOOC, a coursera course recommended
by our tutor [3]. In these course, we reviewed the tools and techniques, mainly cryptograph-
ical needed in order to have the main knowledges to understand Bitcoin, that we already
learnt in previous University subjects. After that, a global vision of the idea of cryptocur-
rency and how Bitcoin puts it in practice is explained and later detailed a little bit more
technically but without getting into implementation details. Politics, cryptocurrency and
other subjects were skipped as didn’t contribute any relevant information to our project.
With these course finished, we accomplished the first tasks of learning the Bitcoin basics.

6

2.3. Bitcoin low-level understanding Progress Report I

2.3 Bitcoin low-level understanding

Despite there are quite a lot sites with information about the Bitcoin cryptocurrency, the
fact is that when dealing with Bitcoin in a low-level detail, information is scarcely found.
Most of the information to understand the Bitcoin protocol implementation was found in
a Wiki-like site called Bitcoin.it [4]. The rest of information was found in developer Q&A
sites like StackOverflow 3 or the more Bitcoin-specific site Bitcoin Stack Exchange4, and
several forums and blogs (that will be properly cited in the report in the following pages
and are also properly cited in the software code documentation)

2.4 Transaction low-level understanding

Once we understood how basic concepts were implemented in the Bitcoin protocol, we de-
cided to take sample pay to public key address transactions from the main Bitcoin network
(also known as the production network), as most of them are of that kind and regular (we
could be unlucky and pick strange transactions from the testnet, the development Bitcoin
network used for new features testing).

We chose to understand low-level, byte per byte, pay to public key address transactions
first as they are the most simple transactions: they spend funds by signing using a private
key and send funds by specifying (the hash of) a public key. We have to understand fully
the most simple transactions to create complexer transactions with specific spend and
payment conditions (also called smart contracts)

We studied the meanings and the encodings used (little endian most of them) of all the
fields in a transaction and compared our knowledge with real transactions we took from
the mainnet using a block explorer [5] [6].

The summary is that a Bitcoin transaction contains a version field, inputs field, outputs
field, and a locktime field, with each field having a specific byte format and representation.
The inputs field contain a list of inputs, where each of them references to the transaction
(UTXO, unspent transaction output) that will be spent, its spent script (signatures and
public keys in P2PKH cases) and a sequence field. In the case of the outputs, it specifies
a list of outputs fields where each output contains a value and a script containing the
conditions that the spender must satisfy to spend it (in P2PKH cases, the hash of the
public key whose paired private key will sign the spending transaction).

3https://stackoverflow.com
4https://bitcoin.stackexchange.com/

https://stackoverflow.com
https://bitcoin.stackexchange.com/

2.5. Script low-level understanding Progress Report I

The following picture illustrates a low-level transaction and its fields:

Figure 2.1: A Bitcoin transaction in low-level, byte detail [1]

Understanding the version, number of inputs and outputs, references to outputs in
inputs and specification of output values was mostly a reading task to know the byte
format and encoding from the Bitcoin Wiki [7]. Some fields like sequence or locktime were
not researched depthly as were not relevant in that moment. The most difficult pieces to
understand where the scripts, that specify how the transaction outputs can be spend and
how the transaction inputs (that point to unspent outputs) get spent.

2.5 Script low-level understanding

To understand scripts, the Bitcoin Wiki [8] provided very useful information about them in
low-level, despite omitting (or not specifying clearly) details like the push data opcodes.
Several posts from forums, blogs and Q&A answer sites where used to complete the in-
formation [9,10]. The most difficult part was to understand how signatures are performed,
since a new special transaction (copy of the transaction but removing some fields) has to
be created to then sign it and set it into DER format in order to add a signature to a
script [11,12].

To view scripts in a more graphical way, the online siteWebBTC provided a visual script
executor given a blockchain transaction [13] and hashmal project frommazaclub GitHub user
provided a GUI to create and test scripts [14].

2.6. Conclusions about the research Progress Report I

Figure 2.2: Hashmal script editor and executor screenshot

2.6 Conclusions about the research

Once the research was concluded and a raw transaction in bytes had acquired meaning for
us, being able to decode most of the bytes in it, we concluded several points:

• The Bitcoin and smart contracts potential
The fact that Bitcoin allows scripts to set how the funds of a transactions can be
spent and scripts to spend those funds providing the conditions specified, has an

2.6. Conclusions about the research Progress Report I

enormous potential as allows developing smart contracts that ables us to perform
financial transactions with a huge set of possible spending conditions just limited
to the scripting language limits, where those transactions will be protected cryp-
tographically by a decentralized network of nodes that will check and validate that
those conditions are accomplished. These idea and its potential has never seen before
the appearance of Bitcoin.

• Sparsed and few low-level documentation
Despite there’s quite much information about the Bitcoin concept and high-level op-
eration explanations, there are just few websites that explain how Bitcoin works at
a low-level detail, explaining what each byte means inside a transaction. Even best
way to understand some details is to look at the Bitcoin Core’s C++ implementa-
tion [15], the widely used Bitcoin node (with some comments that try to make the
code more readable). Developing an informative website or media that collects and
explains Bitcoin from the highest to the lowest level would be a really interesting
and valuable educational resource that could aim more developers to play with the
Bitcoin technology

• The need for software models and architectures (ie: a framework)
Due to the lots of concepts, ideas and dispersed items that play a role in Bitcoin (and
just knowing and fully-understanding the transactions and therefore script pieces),
defining a model (an object in OOP) for each item that is present in the process
of a transaction generation can be a way to allow faster features development by
abstracting hard low-level details so new developers don’t get afraid to develop new
Bitcoin features without spending hours to understand absolutely everything and
losing time with technical, technological, programming-language details that don’t
provide any value or innovation. We’ll try to create those models as much as our
timing and project scope allows us to create them without delaying the schedule.
In this sense, the alt-currency Ethereum [16] has made great progress.

The software framework

Once the research was full-filled and (most part of) transactions were understood at a byte
low-level, we started developing our software.

3.1 The goals

The main goal for our software was to create simple P2PKH transactions in this first
iteration of the development, to then be able to perform more iterations and add more
complex transactions, until completing the project goal of creating the transactions needed
to create and operate Bitcoin Payment Channels.

3.2 Technologies and environment setup

We decided to use Python 3.6 because of our experience developing applications using this
programming language and the ability it provides to focus on adding and implementing
features quickly without having to worry much about low-level coding aspects like memory
handling, centering the efforts in adding value to the application and therefore, to the
project.

3.2.1 Libraries

After deciding the programming language, we searched for libraries that helped us per-
forming complex operations like signatures, encoding operations, ...

We used the following ones:

• python-bitcoinlib [17]

Provides handling of base58 encoding, scripts, public keys and data structures in
general of the Bitcoin protocol

11

3.3. The architecture and design Progress Report I

• pybitcointools [18]

Library to perform common cryptographic operations in Bitcoin, providing an easy
interface that converts the format of the input parameters automatically to avoid
tedious format conversions

3.2.2 Version control system

We use Git, as mentioned in the initial report to handle the software versions and work in
parallel. The source code of the project is publicly available5:

https://github.com/uab-projects/btc-payment-channels6

3.3 The architecture and design

As we said in the previous research chapter conclusions, there was a need of modelling the
Bitcoin items in order to provide a better understanding and an abstraction to allow fast
feature development without having to worry for low-level programming-language details.
Following this non-functional requirements in aim to provide a better library for Bitcoin
Python developers, we modelled all items that were in the scope of the project using OOP:

• Address
An address allows to set how the funds must be spent in a transaction output, and
can also contain public or private keys. Our model must provide an easy interface to
create them using the items that they require, depending on the address type, that
we’ll also model. From an address, we have to be able to create automatically an
output script if the address type matches (ie: does not contain a public / private
key)

• Script
A script must be able to contain a list of fields (opcodes an data fields) to be able to
set the spend conditions or to spend some output script. Therefore we can model a
basic script, input, output, redeem and payment scripts and use the factory design
pattern to easily build the most known types.

• Input
Contains the reference to the previous transaction, number of output, spending script,
and sequence field

5Checkout https://www.uab.codes to stay informed about the latest releases
6Ensure to check the development branch as we don’t spend time launching releases very often as the

code it’s in continuous progress

https://github.com/uab-projects/btc-payment-channels
https://www.uab.codes

3.4. A basic transaction creation Progress Report I

• Output
Contains the value to spend and the script with the conditions to spend

• Transaction
Contains all the transaction fields, version, inputs, outputs and locktime field

With all these items modelled and handled with easy, defining all formats of inputs and
ouputs in an extensive in-code documentation, we provide a very good framework to work
with and easily extend it using the items to create new transactions. We just have to have
a way to transform them into bytes.

3.3.1 The serializable interface

To allow modularity and the easy combination of all the models, each of it must imple-
ment the serializable interface, that basically means that the object has to be able to be
converted into an array of bytes (a bytes built-in object in Python), with the serialize()
method. Optionally (as it’s not a feature to accomplish our project main goals), also has
to implement a deserialize method, to create a new object from an array of bytes.

This way, we can create several objects from our models and join them as if we joined
arrays of bytes, but with the ease of creation of a built-in Python classes instantiation,
friendly for developers.

3.3.2 The libraries’ use

If all these models have been created, why have we mentioned the previous libraries?
We have just coded the models and joined them together, but the algorithmic parts and
complex operations have been delegated to those libraries, such as base58 encoding and
decoding for addresses and ECDSA signatures. The rest has been coded by ourselves.

3.4 A basic transaction creation

Once all the models have been coded and its serialization implemented, we have tested our
framework by creating a P2PKH basic transaction that transfers funds creating a signature
and setting the public key (hash) to pay to.

After several ECDSA signatures format mistakes and misunderstandings, we succesfully

3.4. A basic transaction creation Progress Report I

broadcasted a valid and confirmed transaction moving funds between ourselves.7 The
transaction was created before the milestone deadline scheduled, the 20th of March of
2017

7The transaction can bee seen in the following testnet block explorer using its txId: https://tbtc.
blockr.io/tx/info/258fb211724412d6ec6a531973c58233143e6ab355623658adc3164a5c70bd5b

https://tbtc.blockr.io/tx/info/258fb211724412d6ec6a531973c58233143e6ab355623658adc3164a5c70bd5b
https://tbtc.blockr.io/tx/info/258fb211724412d6ec6a531973c58233143e6ab355623658adc3164a5c70bd5b

Unidirectional payment channel

Once we can create transactions and more important, scripts, in an easy way, we are
prepared to design more complex scripts to create smart contracts. This means in the
following iteration of development, we have to provide new models that allow the generation
of multisig redeem scripts and other special conditions like time / expire conditions or
hashlock contracts.

4.1 Understanding a payment channel

There’s quite few information about payment channels over Bitcoin cryptocurrency online.
We’ve used the knowledge our tutors have provided us and an article also referenced by
them on the Bitcoin Magazine [19].

The basics of a payment channel is that there has to be a commitment or funding transac-
tion to fund the channel and then make payments using those funds to generate transactions
that share out the funds to give more funds to a party. After the channel operation, the
channel must be closed with a closing transaction.

The idea is that those transactions that share out the funds can end in the blockchain
(maybe after some time) and be valid, so that both nodes trust the transaction and can
verify them using their nodes. But they don’t get broadcasted to the network until the
close transaction sets the final funds distribution, relieving the blockchain from storing
those transactions and allowing to increase the speed of transactions between these parties
as they can be generated and validated in much less time than the time it takes a regular
transaction to appear on the blockchain and confirmed. At the time they exchange the
payment transaction (that distributes the channel funds) the payment has been done as
they know, can validate theirselves and trust that if the transaction ends in the blockchain
would be valid.

The key is how to create those transactions in order that no attacks are possible (even
DoS) to the channel by any of the parties by using cryptography and game theory

15

4.2. Modelling a unidirectional payment channel Progress Report I

4.2 Modelling a unidirectional payment channel

Knowing that a payment channel implies the creation of scripts that ensure no attacks on
the channel are possible and the parties play fair, the effort and problem is to create those
scripts to be functional and secure at the same time. To speed up development, we will
evade the malleability issues and assume the same scripts can be coded using SegWit, but
without implementing them using SegWit to save time.

4.2.1 Schedule problems

At the time of writing this document, the schedule said we should have implemented those
three scripts and transactions to allow commitment, payment and channel closure. Due to
the lack of awareness and excess of optimism, we couldn’t design all three scripts and we
just modelled the first one. In the rescheduling chapter, more details are given about how
the schedule has changed.

4.2.2 Commitment

The commitment for a unidirectional channel can be done in two ways: a transaction
that funds the channel and expires at a certain time, returning the funds to the funder(s)
to prevent the funds from being locked out if a party doesn’t collaborate or create a
simple funding transaction and after that a refund transaction that is valid after a certain
time. The easiest is two create two transactions, but triggers problems of who signs the
transaction first, trust problems in the timelapse the first transaction is created and signed
and the refund is signed too, The first option requires a complex script but avoids such
trust problems

Single-transaction commitment script

This transaction funding transaction must spend inputs owned by the parties of the channel
and set the output conditions to a multisig output that requires both parties signatures to
create transactions on, therefore creating the channel, or to return the funds after a certain
time in order to prevent fund-locking if a party doesn’t collaborate.

Creating a multisig script requires the comprehension of Bitcoin P2SH scripts, that as
many low-level aspects of the Bitcoin subject, few information can be found over the In-
ternet. Fortunately, a blogger and developer posted a really detailed and clear explanation
about the subject [20]

Our scriptSig proposal for the payment transaction (whose partial hash, just of the
redeemScript piece, would define the first commitment transaction using a P2SH).

4.2. Modelling a unidirectional payment channel Progress Report I

OP_0 <sigA> <sigB> | OP_2 <pubKeyA> <pubKeyB> OP_2 OP_NOTIF <time>
OP_CHECKLOCKTIMEVERIFY OP_DROP <PubKeyFunder> OP_CHECKSIG

Where <PubKeyFunder> would be the public key of the channel funder (we assume an
easy case where just one of the parties fund the channel). In the case the channel ex-
pires, the scriptSig would change to spend the funds from OP_0 <sigA> <sigB> to OP_0
<sigFunder> OP_DUP OP_OVER so the multisig fails but doesn’t triggers and error and then
the time is verified and after that the signature is checked agains the funder public key.
This script has been revised by one of our tutors and requires its implementation and
further testing

Goals revision

As appeared on the initial report, the final goal is to implement a bidirectional payment
channel based on the idea and protocol explained on the Christian Decker’s paper [21]. The
software that implements the payment channel must be able to create a payment channel
asking the user for parameters that can be understandable for a person with basic Bitcoin
knowledge about its operation.

Depending on the timing, that has changed due to optimistic estimations, we’ll achieve a
certain level of automation and ease to create the channel. We don’t know how many iter-
ations of software development (transaction model, script model, implementation and test)
will take until the payment channel gets implemented and its operational. After that, the
rest of cycles or iterations will be dedicated to automate and enforce the channel security.

5.1 Conclusion

Despite the new and advanced low-level knowledge of Bitcoin that has made us reschedule
the timing due to optimistic timings, we still think that can achieve the main goal of cre-
ating an operational bidirectional payment channel using the Christian Decker’s protocol.
What will change is that the automation and ease of use of the channel maybe won’t be
the same as the expected in the initial report.

18

Methodology revision

We thought at the initial report to work using a CVS for our code that we’ll keep using as
provides extended control and integrity over our code and iterative development as provides
features in short periods of time, but taking an adequate time to design, implement and
test (from now on transactions for the payment channels) and reducing the iteration times
to one week or less strictly to see results soon. What we’ve learned is that design (or
transaction and script model or creation in these cases) is really important as if a mistake
is made in that stage and then everything gets implemented, we’ll realize the mistake while
testing, having to change the design and losing much of the time of a work that in most
cases won’t be profitable. Therefore in these further iterations of the software development
we’ll increase time in design and testing and try to reduce it in implementation as the prior
objective is to create operational transactions that create a payment channel.

6.1 Conclusions

We’ll follow the same methodologies as have been useful to keep and maintain a rhythm to
be on time in most of the time of the project. We’ll just invest a few more time in design
stage to prevent design errors to be discovered on the test phase and losing implementation
work time, while also adding more time to the test phase as implementing scripts is not
easy as far as we have seen. Also reducing the iterations to one week or less will try to
provide more features in less time. We’ll check in next report how this methodology has
worked.

19

Schedule revision

As we said before, and once our knowledge of Bitcoin arrived at a low-level detail, we
realized the time we estimated for script and transaction modelling was too optimistic so
changes appeared in the planning from that task forward.

7.1 Changes motivation

As appears in the previous methodology chapter, we’ll dedicate more time to transaction
modelling and script creation and to its testing and try to reduce the implementation time
as with the framework created it will suppose to be simple and not require much lines of
code. This way we want to achieve the goal by redistributing the time assigned to its task.

7.2 Other minor changes

In order to make the Gantt diagram simpler, we’ve reduced the iteration to design, im-
plement, test and launch that mean to create, implement, test and broadcast transactions
respectively. Therefore it’s understood that in each iteration cycle, a different transaction
will be developed, requiring 3 transactions modelling per channel (and that the unidirec-
tional channel has to be implemented). Also several subtasks were reduced to a main task
to reduce the resulting Gantt diagram size and iterations were defined to fullfill all diagram
time lapse.

20

7.3. Resulting Gantt diagram Progress Report I

7.3 Resulting Gantt diagram

After performing the previously mentioned changes, we obtain the following new Gantt
diagram:

Figure 7.3: Gantt diagram of the new schedule [February-March]

7.3. Resulting Gantt diagram Progress Report I

Figure 7.4: Gantt diagram of the new schedule [March - April]

7.3. Resulting Gantt diagram Progress Report I

Figure 7.5: Gantt diagram of the new schedule [April - May]

7.3. Resulting Gantt diagram Progress Report I

Figure 7.6: Gantt diagram of the new schedule [May - June]

7.3. Resulting Gantt diagram Progress Report I

Figure 7.7: Gantt diagram of the new schedule [June - end]

Bibliography

[1] “File:txbinarymap.png - bitcoin wiki.” https://en.bitcoin.it/wiki/File:
TxBinaryMap.png. (Accessed on 04/04/2017).

[2] “Testnet btc charts | blockr.io.” https://tbtc.blockr.io/charts. (Accessed on
04/04/2017).

[3] “Bitcoin and cryptocurrency technologies - princeton university | coursera.” https:
//www.coursera.org/learn/cryptocurrency/. (Accessed on 04/04/2017).

[4] “Bitcoin wiki.” https://en.bitcoin.it/wiki/Main_Page. (Accessed on
04/04/2017).

[5] “Bitcoin blockbrowser.” https://webbtc.com. (Accessed on 04/04/2017).

[6] “Blockchain explorer price charts | blockr.io.” https://btc.blockr.io/. (Accessed
on 04/04/2017).

[7] “Transaction - bitcoin wiki.” https://en.bitcoin.it/wiki/Transaction. (Accessed
on 04/04/2017).

[8] “Script - bitcoin wiki.” https://en.bitcoin.it/wiki/Script. (Accessed on
04/04/2017).

[9] “Deconstructing bitcoin transactions part 1 - siliconian.” https://www.siliconian.
com/blog/16-bitcoin-blockchain/22-deconstructing-bitcoin-transactions.
(Accessed on 04/04/2017).

[10] “transactions - how to redeem a basic tx? - bitcoin stack exchange.” http://bitcoin.
stackexchange.com/questions/3374/how-to-redeem-a-basic-tx. (Accessed on
04/04/2017).

[11] “Op_checksig - bitcoin wiki.” https://en.bitcoin.it/wiki/OP_CHECKSIG. (Ac-
cessed on 04/05/2017).

26

https://en.bitcoin.it/wiki/File:TxBinaryMap.png
https://en.bitcoin.it/wiki/File:TxBinaryMap.png
https://tbtc.blockr.io/charts
https://www.coursera.org/learn/cryptocurrency/
https://www.coursera.org/learn/cryptocurrency/
https://en.bitcoin.it/wiki/Main_Page
https://webbtc.com
https://btc.blockr.io/
https://en.bitcoin.it/wiki/Transaction
https://en.bitcoin.it/wiki/Script
https://www.siliconian.com/blog/16-bitcoin-blockchain/22-deconstructing-bitcoin-transactions
https://www.siliconian.com/blog/16-bitcoin-blockchain/22-deconstructing-bitcoin-transactions
http://bitcoin.stackexchange.com/questions/3374/how-to-redeem-a-basic-tx
http://bitcoin.stackexchange.com/questions/3374/how-to-redeem-a-basic-tx
https://en.bitcoin.it/wiki/OP_CHECKSIG

Bibliography Progress Report I

[12] “bitcoin core - why the signature is always 65 (1+32+32) bytes long? -
bitcoin stack exchange.” http://bitcoin.stackexchange.com/questions/12554/
why-the-signature-is-always-65-13232-bytes-long. (Accessed on 04/05/2017).

[13] “Bitcoin blockbrowser - debug script execution.” https://webbtc.com/script/
ce97c4ebc6a058dbb775cf8d7d95aa06a8728673c482a6a721911185b39c332a:0. (Ac-
cessed on 04/05/2017).

[14] “mazaclub/hashmal: Hashmal.” https://github.com/mazaclub/hashmal. (Accessed
on 04/05/2017).

[15] “bitcoin/bitcoin: Bitcoin core integration/staging tree.” https://github.com/
bitcoin/bitcoin. (Accessed on 04/05/2017).

[16] “Ethereum project.” https://www.ethereum.org/. (Accessed on 04/05/2017).

[17] “petertodd/python-bitcoinlib: Python2/3 library providing an easy interface to
the bitcoin data structures and protocol..” https://github.com/petertodd/
python-bitcoinlib. (Accessed on 04/06/2017).

[18] “vbuterin/pybitcointools: Simple, common-sense bitcoin-themed python ecc library.”
https://github.com/vbuterin/pybitcointools. (Accessed on 04/06/2017).

[19] “Understanding the lightning network, part 1: Building a bidirectional bitcoin
payment channel | bitcoin magazine.” https://bitcoinmagazine.com/articles/
understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791/.
(Accessed on 04/06/2017).

[20] “Bitcoin multisig the hard way: Understanding raw p2sh
multisig transactions.” http://www.soroushjp.com/2014/12/20/
bitcoin-multisig-the-hard-way-understanding-raw-multisignature-bitcoin-transactions/.
(Accessed on 04/06/2017).

[21] C. Decker and R. Wattenhofer, “A fast and scalable payment network with bitcoin
duplex micropayment channels,” in Symposium on Self-Stabilizing Systems, pp. 3–18,
Springer, 2015.

http://bitcoin.stackexchange.com/questions/12554/why-the-signature-is-always-65-13232-bytes-long
http://bitcoin.stackexchange.com/questions/12554/why-the-signature-is-always-65-13232-bytes-long
https://webbtc.com/script/ce97c4ebc6a058dbb775cf8d7d95aa06a8728673c482a6a721911185b39c332a:0
https://webbtc.com/script/ce97c4ebc6a058dbb775cf8d7d95aa06a8728673c482a6a721911185b39c332a:0
https://github.com/mazaclub/hashmal
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://www.ethereum.org/
https://github.com/petertodd/python-bitcoinlib
https://github.com/petertodd/python-bitcoinlib
https://github.com/vbuterin/pybitcointools
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791/
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791/
http://www.soroushjp.com/2014/12/20/bitcoin-multisig-the-hard-way-understanding-raw-multisignature-bitcoin-transactions/
http://www.soroushjp.com/2014/12/20/bitcoin-multisig-the-hard-way-understanding-raw-multisignature-bitcoin-transactions/

	Introduction
	Brief summary of the current status

	Bitcoin cryptocurrency study
	The goals
	The basics about Bitcoin
	Bitcoin low-level understanding
	Transaction low-level understanding
	Script low-level understanding
	Conclusions about the research

	The software framework
	The goals
	Technologies and environment setup
	Libraries
	Version control system

	The architecture and design
	The serializable interface
	The libraries' use

	A basic transaction creation

	Unidirectional payment channel
	Understanding a payment channel
	Modelling a unidirectional payment channel
	Schedule problems
	Commitment

	Goals revision
	Conclusion

	Methodology revision
	Conclusions

	Schedule revision
	Changes motivation
	Other minor changes
	Resulting Gantt diagram

