
FINAL COMPUTER SCIENCE DEGREE PROJECT, ENGINEERING SCHOOL, AUTONOMOUS UNIVERSITY OF BARCELONA (UAB.CAT) 1

Development of a payment channel over the
Bitcoin network

David Lozano Jarque, Undergraduate student, UAB.cat

Abstract—Bitcoin is a decentralized digital cryptocurrency that allows payments between users without the need of a
central authority. Despite the potential of the technology, in the past years, the scaling debate has been the main focus
of development as because of the internal details of implementation of the technology, the network can not process
and store the highly increasing demand of transactions in the public ledger, also called the blockchain. A solution for
this is reducing the need of transactions with off-chain payment channels, that can be able to process thousands of
micropayment transactions between two nodes so that most transactions do not appear in the blockchain but if they did
would be valid, using the Bitcoin scripting language and some game theory techniques. With payment channels, only the
setup and closure transactions would appear in the blockchain and all the payment transactions would be temporary and
stored just by the nodes of the channel, relieving the Bitcoin blockchain transaction rate. This project consists in designing
and implementing a bidirectional payment channel by using the combination of two unidirectional payment channels.

Keywords—Cryptocurrency, Bitcoin, scaling, Payment channel, Bidirectional payment channel

F

1 INTRODUCTION

B ITCOIN is a cryptocurrency that first
appeared in a cryptography mailing list [1]

with a post by an anonymous user who called
himself “Satoshi Nakamoto“ and defined
in a whitepaper [2] the first decentralized
cryptocurrency. It allowed direct peer to peer
digital currency transactions without the need
of a central authority in which users trust for
validating those transactions. Instead, each
peer can validate those transactions using
cryptography (technically validating digital
signatures) and after that generate a block
of transactions including them. An action
(validate transactions and generating blocks)
whose reward is retrieving newly generated
currency, aiming peers to secure the network.
To decide which node can generate (also
called mine) the next block of transactions
and reach a consensus, they are challenged
to solve a cryptographic riddle, called proof of
work [3]. Nodes trying to solve that challenge

• E-mail: uab@davidlj95.com
• Specialized in Information Technologies
• Tutored by Joan Herrera Joancomart (dEIC.UAB.cat)
• Course 2016-2017

Manuscript written on June 2017, Engineering School (UAB.cat)

and generate (also called solve) new blocks to
receive a reward for their work are called miners

All the transactions ever made, grouped
in a structure called block, are stored forming
a chain. This chain is stored in a distributed
read-write only database each (full) network
node stores called the blockchain. This name is
given as each block is chained to the previous
creating a not-modifiable chain of blocks
using hash functions that link each block to a
previous one using its hash.

1.1 The blockchain limits
At a high level, this is how Bitcoin works.
The problem comes with the public ledger or
blockchain that stores absolutely all transactions
ever performed. With an average block size of
nearly 1MB [4] (as it is the hardcoded limit
size for a block) that contains approximately
2.000 transactions [5] and with a block
appearing every 10 minutes, this makes this
distributed database grow approximately
50GB every year [6]. The block size limit is
fixed at 1MB and difficulty for solving new
blocks using the proof-of-work algorithm [3]
is dynamically adjusted so that new blocks
appear approximately every 10 minutes. This



FINAL COMPUTER SCIENCE DEGREE PROJECT, ENGINEERING SCHOOL, AUTONOMOUS UNIVERSITY OF BARCELONA (UAB.CAT) 2

is fixed in the protocol and therefore the code
of the software nodes run, so can not be
changed without everyone agreeing or could
lead to a chain split [7].

1.2 The scaling problem
With Bitcoin gaining popularity among more
users, more transactions are created and needed
to handle and get stored in the blockchain.
Due to the limits set, not all transactions can
be handled and the number of delayed trans-
actions until the network can handle them is
increasing every day. There are several active
proposals [8], [9] to change those limits and
allow to handle more transactions, but mean-
while a solution gets activated and agreed by
all the Bitcoin ecosystem (users, developers and
miners), another long term solution is being
proposed: reducing the number of transactions
needed to perform payments.

1.3 Payment channels
This is where payment channels appear [10],
allowing to two users or more that need a
constant flow of transactions to pay each other
instantly without waiting for the confirmation
of the transaction in the blockchain. The
way they operate is exchanging transactions
privately between them that do not appear in
the blockchain, also called off-chain transactions.
Just the opening and closure transactions
of the channel would be needed to appear
in the blockchain, therefore reducing the
amount of transactions they need to send to
the blockchain and relieving the blockchain
from transactions. The opening would lock
some funds into a smart contract and the
closure would return those funds depending
on the transactions performed in the payment
channel.

In the event of any dispute on the closure
transaction, the trick is that privately
exchanged off-chain transactions could be
sent to the blockchain and they would be
valid. Therefore once broadcasted would
give the same result of funds distribution

as the closure transaction. Those payment
transactions, but, are kept private by each
node until the channel needs to be closed
and there is no mutual agreement between
peers. Each payment transaction replaces the
old one using incentives so just the last one
payment needs to be kept, allowing a high rate
of transactions between nodes of the payment
channel. The payment channel has to be secure
by design and implemented with a secure
protocol so that no party of the payment
channel can not steal or lock the other party
funds (act maliciously).

2 BITCOIN AND SMART CONTRACTS

As said before, Bitcoin allows to store a de-
centralized consensual database of transactions
that transfer units of currency (bitcoins [11])
between users. To understand how currency
units are moved, we need to understand what
a transaction is at a low level technical detail

2.1 Bitcoin transactions
A Bitcoin transaction is just an array of bytes
that specifies some inputs and some outputs,
prefixed by a version field and suffixed with
a field named nLocktime we will talk about
later. What every transaction does is to spend

Fig. 1: Transaction binary format

a previously generated output by specifying in
an input a pointer to that previous output, also
called UTXO (unspent transaction output). An
UTXO refers to a transaction id and number of
output of that transaction that has not yet been
spent by any other transaction1. Also, some

1. If all transactions have to spend a previous output, when
are the first outputs generated? There is a special transaction
with no inputs that is the one that generates currency units. It
is just valid once in a block, to spend the reward (that must
match exactly the reward value) a miner receives when solving
a new block



FINAL COMPUTER SCIENCE DEGREE PROJECT, ENGINEERING SCHOOL, AUTONOMOUS UNIVERSITY OF BARCELONA (UAB.CAT) 3

data (most times ECDSA signatures) follows
the UTXO in order to authorize spending the
funds. This data is called the scriptSig. This
input or inputs are moved specifying a new
set of outputs to move the funds spent. In each
output, the value of currency units to move to
the output and the conditions for them to be
spent must be specified. Those conditions are
placed in a field called scriptPubKey as initially
funds were always paid to a public key, so
just the owner of its pairing private key could
spend them.

This mentioned data to spend scriptSig and
conditions to spend scriptPubKey is specified
using a scripting language exclusively designed
for the Bitcoin protocol [12].

2.2 Bitcoin scripting language
One of the powers of Bitcoin is its stack-based
scripting language, as allows to specify how
funds can be transferred by creating scripts in
the Bitcoin scripting language [12]. Therefore
for a transaction to be valid, the input must
refer a valid and non-spent UTXO and the
execution of the scriptSig input followed by
the referred output script (the scriptPubKey)
must end successfully with a non-empty stack.
Also, the sum of outputs’ values must be
less than the sum of inputs’ values2. This
scripting language basically reads 1-byte
opcodes that able to store (push into the
stack) data, perform arithmetical and logical
operations, and some cryptographic operations
like ECDSA signatures and hash functions
among others.

The most used script set to move funds
is called a P2PKH (pay-to-public-key-hash).
This kind of script set uses the following
scripts to move funds:

• scriptPubKey Specifies a hash of an
ECDSA public key and a signature from
this public key whose hash matches the
specified one

2. The difference between the sum of inputs’ values and
the sum of outputs’ values if is greater than 0 is called the
transaction fee, and will be rewarded along with the block
reward to the node that includes the transaction in a block

• scriptSig Must contain a valid signature
followed by the public key used to create
that signature (whose hash must match
the specified in the scriptPubKey)

A Bitcoin address is then the hash of a public
key needed in the mentioned scriptPubKey3.
This addresses are commonly used to pay
units of currency between users who reveal
their addresses to be paid.

But as said before, the Bitcoin scripting
language allows us to code any script to
specify the spend conditions or scriptPubKey
and any script to specify the data needed
to spend following those conditions (the
scriptSig). Here is when the script set called
P2SH (pay-to-script-hash) comes. This method
of payment allows us to create an smart
contract by defining an script where we
specify the conditions to spend the output
(called the redeemScript) and create an output
paying to this script hash:
• scriptPubKey Specifies the hash of the

smart contract (defined in a redeemScript)
that must be executed to spend the funds

• scriptSig Contains the data needed by the
redeemScript in order for it to execute suc-
cesfully along with the redeemScript itself.

As we see to spend a P2SH UTXO, we must
reveal the reedemScript and often specify also
data that the script needs to be spent, like some
signatures (multisig P2SH) or a hash preimage,
or whatever the redeemScript we design needs
to execute succesfully4.

3 UNIDIRECTIONAL PAYMENT CHAN-
NELS

Once understood how Bitcoin transactions
work and how we can develop smart contracts

3. Technically, the address is prefixed by a version byte and
suffixed with a SHA-256 4-byte checksum of that hash, all
encoded in base58 for visualization purposes. The version byte
helps identifying the address script set (P2PKH or P2SH) and
network

4. Despite we could technically specify any output and input
script so that if the input script followed by the output script
execute succesfully the transaction is valid, if we don’t use
either P2PKH or P2SH, our transaction would be non-standard
and probably not accepted by the network nodes because of the
Bitcoin protocol implementation [13]



FINAL COMPUTER SCIENCE DEGREE PROJECT, ENGINEERING SCHOOL, AUTONOMOUS UNIVERSITY OF BARCELONA (UAB.CAT) 4

using the Bitcoin scripting language, we can
introduce unidirectional payment channels.
This kind of payment channel basically ables
transactions between two users, one of them
paying (payer) incrementally some amounts to
the other one (payee). We will call Alice the
payer and Bob the payee.

Also called simple micropayment channels,
they were first defined by Mike Hearn and
Jeremy Spilman [14]. With the activation of
CLTV opcode in the Bitcoin scripting language
through BIP-65 [15], but, those channels were
improved to avoid transaction malleability [16]
simplifying the channel structure.

3.1 The scheme
Every channel has three phases:

1) Funding: where Alice, also called funder,
puts some units of currency she owns
into a smart contract (we use a P2SH to
pay to a redeemScript hash). The transac-
tion to perform this operation is called
the funding transaction. This smart con-
tract must lock the funds for a certain
period of time in order to avoid Alice
to spend the channel funds before the
channel gets closed. The time where the
funds get unlocked and available to Alice
again is called the expiry time of the
channel. This way we ensure Alice can
not move this funds until the channel’s
expiry time so Bob can retrieve the pay-
ments before this time with any of the
payment transactions signed by both of
them.

2) Payments: where Alice creates and signs
transactions spending the funding trans-
action UTXO that incrementally pay
more to Bob (via a P2PKH scriptPubKey).
Bob just keeps the transaction that pays
more to him, as just one of all the pay-
ment transactions is valid because all of
them spend the same UTXO (and just
one transaction can spend an UTXO).
This is why the channel is unidirectional,
as Bob will keep the transaction that pays
more to them because of the economi-
cal incentive. All these transactions are

not released to the blockchain until the
channel closure, where Bob performs his
signature if he agreeds in the transaction
output (moves the funds to his P2PKH
address, for instance) and releases the
transaction to the network. A multisigna-
ture scheme (also called multisig) [17] is
necessary to ensure Bob can not perform
any payment by himself and Alice can
not return the funds to herself. Closure:
this can happen because of two reasons:
• Graceful close Bob broadcasts the

latest received payment transaction
(signed by both Alice and Bob)
to spend the funding transaction
UTXO and closes the channel as the
funding transaction UTXO can not
be spent again. This must be per-
formed by Bob before the channel’s
expiry time in order to ensure that
funds can be retrieved as after that
time Alice can move the funds to
herself again.

• Expiry date If Bob does not coop-
erate, when the expiry time arrives
Alice can safely recover her funds
just by performing a P2PKH trans-
action spending the funding trans-
action UTXO.

To sum up, the scheme is to create a funding
transaction paying a certain amount of locked
Alice’s funds to a smart contract that allows
spending it either
• a) Using a multisig scheme so Alice creates

a transaction to pay to Bob that signs
prior sending it to him. When Bob has the
partially signed transaction, if he agrees
paying to the output specified (probably
his P2PKH address) he can just sign it and
wait to broadcast it before the expiry time
and make the payment effective

• b) After a certain time by Alice (as if Bob
does not collaborate and does not per-
form the multisig, funds could be locked
forever)

This can be achieved either by creating a smart
funding transaction that includes the expiry
time condition or a multisig funding transaction
and a refund transaction that is signed by both



FINAL COMPUTER SCIENCE DEGREE PROJECT, ENGINEERING SCHOOL, AUTONOMOUS UNIVERSITY OF BARCELONA (UAB.CAT) 5

and allows to be spent after a certain time
using the mentioned CLTV opcode defined in
BIP-65 [15]. For this project, we opted for a
single smart transaction in order to simplify
the process and avoid transaction malleability.
Eventually, the most important part is the fund-
ing smart contract, as must allow a refund after
a certain time in case Bob does not collaborate
so Alice can recover the funds and also to pay
incremental amounts to Bob.

3.2 The smart contract
In order to create a transaction that spends
some funds of Alice and the output pays to a
smart contract that requires a multisig for being
spent or just a signature after certain time, our
proposal5 was to create a transaction funding
this redeemScript:

OP_IF <time> OP_CHECKLOCKTIMEVERIFY
OP_DROP <PubKeyAlice_1> OP_CHECKSIG

OP_ELSE OP_2 <PubKeyAlice_2>
<PubKeyBob> OP_2 OP_CHECKMULTISIG

OP_ENDIF

Note that Alice both owns private key of
<PubKeyAlice_(1/2)> and Bob holds the
private key of <PubKeyBob>.

3.3 Channel operations
With this smart contract script, we could create
and test after that all the transactions for the
channel:

• Funding: A transaction spending an in-
put referring to an Alice’s P2PKH UTXO
and with a P2SH output paying to the
previously mentioned redeem script hash

• Payment: A transaction signed by both
parties (firstly signed by Alice and then
sent to Bob missing its signature to be
valid) spending the redeem script with
the OP_CHECKMULTISIG statement spec-
ifying an OP_FALSE and whose outputs
are two P2PKH to Bob for some amount
and to Alice as a return. Each payment
transaction must pay more than the pre-
vious one to Bob, as Bob will always hold
the one that pays more to him. In case of

5. Along with Carlos Gonzalez Cebrecos

wanting Bob to receive less than the pre-
vious transaction, we need a bidirectional
payment channel.

• Graceful closure: A payment transaction
can act as a closure if broadcasted to the
network previously signed by Bob. It has
to be sent by Bob user before the expiry
time or Alice could use the refund transac-
tion so all payment transactions would be
invalid as those funds would be already
spent by the refund transaction.

• Closure by expiry time: Also called re-
fund transaction. A transaction signed by
Alice, and with nLocktime6 field set
after the <time> field specified in the
script. In other words, after the channel
expiry time. This way Alice is spend-
ing the funding transaction with just its
signature as specifies to pay with the
first block of the redeem script with an
OP_TRUE whose output is a P2PKH out-
put to a public key she owns its associated
private key.

3.4 The protocol
All this transactions must be created follow-
ing a secure protocol that ensures all users
are secure creating and operating the channel
without any of them trusting the other. The
protocol to establish a unidirectional payment
channel between Alice (the payer) and Bob (the
payee) would be the following: Alice, as the
payer, requests opening a channel and specifies
the funds of the channel (maximum amount
Alice can pay to Bob) and the expiry date
of it. If Bob agrees on the channel creation,
he sends its public key so that Alice can cre-
ate the funding transaction. Once the funding
transaction is created, Alice sends the trans-
action to Bob along with the redeem script,
so he can trace it and verify the contract is
correct. Bob sends an acknowledge to Alice if
wants to proceed with the channel opening (a
signed one with Bob’s key so Alice can verify
the acknowledge is real). Alice eventually can
broadcast the funding transaction. Once the

6. We require the use of the nLocktime transaction field in
order to make the script OP_CHECKLOCKTIMEVERIFY work as
specified in BIP-65 [15]



FINAL COMPUTER SCIENCE DEGREE PROJECT, ENGINEERING SCHOOL, AUTONOMOUS UNIVERSITY OF BARCELONA (UAB.CAT) 6

Fig. 2: Unidirectional payment channel protocol

transaction is confirmed, Alice can create pay-
ment transactions, sign them and send them to
Bob privately. When the expiry date is arriving,
Bob will close the channel by broadcasting the
latest received payment transaction. If Bob does
not collaborate, Alice can create and broadcast
her refund transaction after the channel expiry
time.

4 BIDIRECTIONAL PAYMENT CHANNELS

The problem with above channels is that just
Alice can pay incrementally amounts of cur-
rency unit to Bob. What if we want the channel
to be duplex so that both parties can send
amounts of currency in both ways? In this work
we researched following the solution proposed
by Christian Decker and Roger Wattenhofer
[18] that is to basically to create a duplex
payment channel by using two unidirectional
payment channels linked together, one in each
direction. Another popular solution proposed
is the Lightning Network, that uses a more
complex structure to build a duplex payment
channel based on hash-based smart contracts
[19]

4.1 The scheme
As said previously, the idea is to use two unidi-
rectional payment channels, one in each direc-
tion, so that we can pay in both directions. To
do that, in the funding transaction, there must
be two (or more) inputs and two outputs. One
(or more) input and one output per user. The
Alice input spent value minus fees will be the
first output value, where the output will pay
to the same redeem script as the unidirectional
channel. This will be the channel used by Alice
to pay to Bob. The second (or after last Alice’s)
input and second output will be constructed
using the same scheme for Bob to pay Alice.
The rest of the payment channel would work
the same way that in a unidirectional channel,
where each transaction spends an output or
another depending if Alice is paying to Bob or
viceversa.

4.2 The protocol
In order to create the duplex payment channel,
the following protocol must be followed in
order for the channel to be secure: We can

Fig. 3: Bidirectional payment channel protocol



FINAL COMPUTER SCIENCE DEGREE PROJECT, ENGINEERING SCHOOL, AUTONOMOUS UNIVERSITY OF BARCELONA (UAB.CAT) 7

see the protocol is similar to the unidirectional
payment channel. In this example, Alice starts
the request for the creation of the payment
channel, but Bob could also send the request,
inverting the communications until the pay-
ments section. The basic protocol consists in
Alice sending the request to Bob for the channel
creation, as happened with the unidirectional
channel with the funds Alice desires to pay
Bob, but also including his public key so that
Bob can verify the funding transaction created.
If Bob agrees with the channel creation, replies
with his public key to create the output for
Alice paying to Bob and the funds that Bob
wants to use to fund his channel to pay Alice.
Once Alice has all data, can create the fund-
ing transaction with the two outputs and her
input(s), and sign her input(s)7. Alice sends
the partially completed transaction (along with
the redeem scripts) to Bob. Bob checks the
transaction is correct and adds his input signed,
returning the fully signed transaction to Alice
as a final acknowledge for creating the channel.
Once Alice receives the transaction, checks that
is valid and broadcasts the transaction to the
network. Now payments spending the Alice
output to pay to Bob and the Bob output to
pay to Alice can be performed creating off-
chain payment transactions the same way as
in unidirectional channels. To close the channel,
both Bob and Alice have to release the latest re-
ceived payment transactions before the channel
expiry to close the channel. If a party does not
collaborate, they can both send their respective
refund transactions.

4.3 Channel operations
The same operations applied for the unidi-
rectional payment channel (funding, payment,
graceful closure and closure by expiry time)
would be valid (despite the transaction for
funding being slightly different with an added
input and output for the second way channel).

4.4 Channel reset
One thing that can happen is that either Alice
or Bob spends all the funds they owned paying

7. indicating SIGHASH_ALL meaning that signs the transac-
tion containing the two outputs

to the other user. In that case, the channel needs
to be reset, so that the received funds from the
other party can be used to continue paying to
them. To do this, a solution is also described
by C. Decker and R. Wattenhofer [18] and is
called the invalidation tree using what it is
called atomic multiparty opt-in transactions.

4.4.1 Atomic multiparty opt-in

This kind of meta-transactions are a model for
creating transactions to fund smart contracts
(one or more outputs) that instead of being
funded by one or more inputs with a P2PKH
scriptSig owned by a user, they claim a multisig
P2SH output that has not been signed yet. This
allows to first design the smart contract and
once all parties agree, they sign a transaction
spending one or more P2PKH to fund the mul-
tisig output claimed by the opt-in transaction
and now both transactions have funded the
smart contract in a secure way no matter the
order of signatures.

4.4.2 Locktime incentives

This previous transaction models are not nec-
essary for a simple duplex payment channel,
but can be used if we wish the channel to
be reset. Creating another smart contract with
different conditions (like specifying different
amounts) spending the opt-in transaction but
with a lower locktime (locking the transaction
to be valid to a time closer to the present) than
the previous smart contract transaction would
make the new transaction the valid one per
incentive as the old one would have a larger
locktime and therefore the current one can be
spent before. In order for the locktime incen-
tive to invalidate previous transactions work, it
must be lower than the channel’s expiry time.
Consequently, renewing the expiry time is the
only channel parameter change that could not
be done with this kind of incentive. We can also
chain opt-in transactions forming what is called
an invalidation tree, where the invalidation is
performed by specifying lower timelocks on
each new transactions branches to invalidate
previous ones.



FINAL COMPUTER SCIENCE DEGREE PROJECT, ENGINEERING SCHOOL, AUTONOMOUS UNIVERSITY OF BARCELONA (UAB.CAT) 8

4.4.3 Invalidation trees

Chaining multiple atomic multiparty opt-in
transactions forming a tree can be used along
specifying increasingly lower locktimes in or-
der to invalidate old tree branches as those
branches of transactions having a larger lock-
time would be replaced by ones with lower
locktime because they can be released to the
network earlier. All locktimes in order to safely
invalidate old branches, they must be lower
than the previous higher locktime by an in-
crement of time enough for the transaction be
confirmed on the network to avoid attacks (for
instance, 3 or 4 blocks of increment). Also,
these trees slightly change the closure by expiry
time operation, as now, refund transactions are
needed because we can not set a smart contract
with two output values in the same output.
This refund transactions would be created in
the protocol along with the funding’s channel
operations. In the case of a graceful closure,
a transaction spending the funding transaction
with the final balance could be sent if both
parties agree, or all the latest valid tree branch
if they do not agree.

Fig. 4: An example of invalidation trees using
atomic multiparty opt-in transactions and lock-
time incentives

5 THE IMPLEMENTATION

In order to implement the bidirectional pay-
ment channel, a research was performed to
check what Python libraries where available to
develop smart contracts and therefore transac-
tions with smart contracts. What we found is

that no object-oriented and well documented li-
brary was available to create non-typical trans-
actions (P2SH with a custom redeemScript).
Because of that, we implemented a new library
/ framework to create easily customized trans-
actions using the Bitcoin protocol information
and it’s implementation details [20], [21].

5.1 Our Bitcoin framework
To implement our framework, we decided to
create a series of modules and classes oriented
towards to the puzzle-friendlyness property:
all objects / classes must be able to be seri-
alized / deserialize into / from an array of
bytes compatible with the Bitcoin protocol. We
just implemented to save time, but, the strictly
necessary modules and classes needed for this
project development. With this framework we
also hope to set the base to develop a well
designed, usable and easy to understand Bit-
coin Python library that aims new developers
to create smart contracts in the Bitcoin network.

5.2 Developing progress
The framework started with the ability to
create an empty valid transaction and after
that implementing all the fields necessary,
composing each field of another subfields
to allow the mentioned puzzle-friendliness
property. The latest developed part of the
framework was part of the Bitcoin scripting
language (that is in constant development) to
implement the needed opcodes to create the
smart contracts.

Once the framework allowed to create
valid transactions (that required special
focus on cryptography functions and its
serialization), we tested basic P2PKH
transactions created with the framework
and a P2SH multisig transaction. After that,
the OP_CHECKLOCKTIMEVERIFY opcode was
implemented and tested and a unidirectional
payment channel was created.

After all development and testing finished
for the creation of valid and functional
unidirectional payment channels, I started
developing the bidirectional payment channel



FINAL COMPUTER SCIENCE DEGREE PROJECT, ENGINEERING SCHOOL, AUTONOMOUS UNIVERSITY OF BARCELONA (UAB.CAT) 9

as specified in the previous chapter of this
document.

5.3 The duplex channel implementation
The channel implemented basically allows us-
ing a command line interface to operate a
channel with the following operations. No com-
munication has been implemented to focus on
the channel security rather than automatization
and easing the channel use.

• Funding: generates the funding transac-
tion and an invalidation tree of transac-
tions with a defined depth, accepting pa-
rameters to set the channel funds, expiry
time and the public keys of the invalida-
tion tree’s P2SH scripts. In order for the
invalidation to be secure, the P2SH scripts
hashes have to be different so they can not
match another node of the tree. For this
purpose, we added in the implementation
numbers at the end of the redeemScript
that modify their hash but not their func-
tionality. Once the funding transaction
and the first invalidation tree branch has
been created, the refund transaction is
also created with the timelock set at the
expiry time. All this transactions (except
funding) will be signed by the user who
creates the channel, that is supposed to
also have the details of the channel as
the software does not implement external
communications. After that, they can be
sent to the other user, who can use the
bitcoin-cli utility from Bitcoin Core
[?] to sign all of them. Then, the other
user can return them to the creator so
can eventually sign and broadcast the
funding transaction.

• Payment: With the previous transactions
stored, with the payment operation, set-
ting the payment channel UTXO and with
the private key, both users can generate
payment transactions until the unidirec-
tional payment channel of each of them
is spent.

• Reset: Given the same parameters as the
funding, but specifying a reset operation
and the previous timelock used, will gen-
erate another branch of transactions with
the new funds provided.

5.3.1 Usage
The script syntax is the following:
python -m src <operation>
[arguments]
Where we can use the optional argument -h to
know how to indicate the operation (currently
fund, reset) and rest of arguments

5.3.2 Future work and research lines
Usability
The current channel requires the users that
operate the channel high knowledge about
the Bitcoin technology and protocol as
have to sign manually some transactions
and broadcast them. In order to make this
bidirectional payment channels accessible to
a wider audience, the software should be
automated to perform all operations with a
graphical user interface. This interface should
also hide the channel complexities: storing
the transactions’ tree, communicating both
users to agree on the channel parameters,
broadcasting transactions to the network and
handling private and public keys mainly.

Multihop payment channels
Using HLTC (Hash-locked timed contracts
[22]) the implementation could be extended
providing off-chain transactions to perform
payments across multiple existing payment
channels in a similar way the Lightning
Network implements it [19]

6 CONCLUSION
Bitcoin has a great potential as it’s the first
decentralized cryptocurrency currently under-
stood as a great store of economic value. De-
spite that, the scaling problem makes Bitcoin
growth slowlier than desired. A solution for
that is relieving the Bitcoin’s blockchain from
transactions using payment channels with off-
chain transactions between payment services
providers [23]. The bidirectional payment chan-
nel described and implemented in this project
allows to create simple and secure8 bidirec-

8. Until SegWit [8] is not activated, just unidirectional pay-
ment channels and bidirectional payment channels without the
reset operation are secure, because creating off-chain transac-
tion chains can be vulnerable due to transactions’ malleability
issues [16]



FINAL COMPUTER SCIENCE DEGREE PROJECT, ENGINEERING SCHOOL, AUTONOMOUS UNIVERSITY OF BARCELONA (UAB.CAT) 10

tional payment channels using the combina-
tion of unidirectional payment channels, atomic
multiparty opt-in transactions and invalida-
tion trees with locktime incentives. Despite
the channel’s decreasing duration because of
the reset operations, the structure is far more
simple than other solutions like the Lightning
Network [19] and requires less data exchange.
Furthermore, if both parties cooperate along
the channel creation, the bidirectional payment
channel gets really simple to operate, with the
disadvantage of having to send all the valid
tree branch if the final balance of the channel is
not mutually agreed. If the current project gets
implemented securely with SegWit [8] activa-
tion, eventually Bitcoin will be able to provide
a high throughput of instant and low fee trans-
actions without worrying about its scalability.

ACKNOWLEDGMENTS

This work could not have been possible with-
out the collaboration with Carlos Gonzalez Ce-
brecos, another student performing a similar
project that coworked developing our Bitcoin
framework and solving some Bitcoin and re-
lated technologies doubts along with our tutors
Jordi Herrera Joancomarti, Sergi Delgado and
Cristina Perez who introduced us in the Bitcoin
world.

REFERENCES

[1] S. Nakamoto, “Bitcoin p2p e-cash paper.”
http://www.mail-archive.com/cryptography@
metzdowd.com/msg09959.html, November 2008.
(Accessed on 06/09/2017).

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash sys-
tem.” https://bitcoin.org/bitcoin.pdf, November 2008.
(Accessed on 06/10/2017).

[3] “Proof of work - bitcoin wiki.” https://en.bitcoin.it/
wiki/Proof\ of\ work, November 2011. (Accessed on
06/10/2017).

[4] B. L. S.A.R.L., “Average block size - blockchain.” https:
//blockchain.info/es/charts/avg-block-size. (Accessed
on 06/10/2017).

[5] B. L. S.A.R.L., “Average number of transactions per
block - blockchain.” https://blockchain.info/es/charts/
n-transactions-per-block. (Accessed on 06/10/2017).

[6] B. L. S.A.R.L., “Blockchain size - blockchain.” https:
//blockchain.info/charts/blocks-size. (Accessed on
06/10/2017).

[7] A. Pace, “Guest post: Chain splits and resolutions bit-
coin magazine.” https://bitcoinmagazine.com/articles/
guest-post-chain-splits-and-resolutions/, March 2017.
(Accessed on 06/24/2017).

[8] “Segwit resources.” https://segwit.org/. (Accessed on
06/10/2017).

[9] “Bitcoin unlimited.” https://www.bitcoinunlimited.
info/. (Accessed on 06/10/2017).

[10] “Payment channels - bitcoin wiki.” https://en.bitcoin.it/
wiki/Payment\ channels. (Accessed on 06/10/2017).

[11] “Correct use of the word bitcoin - bitcoin stack
exchange.” https://bitcoin.stackexchange.com/
questions/20901/correct-use-of-the-word-bitcoin,
January 2014. (Accessed on 06/24/2017).

[12] “Script - bitcoin wiki.” https://en.bitcoin.it/wiki/Script.
(Accessed on 06/10/2017).

[13] “What node implementations and mining pools relay and
process ’non-standard’ scripts? - bitcoin stack exchange.”
https://bitcoin.stackexchange.com/questions/23435/
what-node-implementations-and-mining-pools-relay-and-process-non-standard-scri,
March 2014. (Accessed on 06/24/2017).

[14] M. Hearn and J. Spilman, “Contract - bitcoin wiki.”
https://en.bitcoin.it/wiki/Contract. (Accessed on
06/11/2017).

[15] P. Todd, “bips/bip-0065.mediawiki at master
bitcoin/bips.” https://github.com/bitcoin/bips/blob/
master/bip-0065.mediawiki, October 2014. (Accessed on
06/11/2017).

[16] “Transaction malleability - bitcoin wiki.” https://en.
bitcoin.it/wiki/Transaction Malleability, August 2015.
(Accessed on 06/25/2017).

[17] “Multisignature - bitcoin wiki.” https://en.bitcoin.it/
wiki/Multisignature, January 2017. (Accessed on
06/25/2017).

[18] C. Decker and R. Wattenhofer, “A fast and scalable
payment network with bitcoin duplex micropayment
channels,” in Symposium on Self-Stabilizing Systems, pp. 3–
18, Springer, 2015.

[19] J. Poon and T. Dryja, “The bitcoin lightning network:
Scalable off-chain instant payments,” 2015.

[20] “Developer guide - bitcoin.” https://bitcoin.org/en/
developer-guide. (Accessed on 06/12/2017).

[21] “Protocol documentation - bitcoin wiki.” https://en.
bitcoin.it/wiki/Protocol documentation. (Accessed on
06/12/2017).

[22] “Hashed timelock contracts - bitcoin wiki.” https://en.
bitcoin.it/wiki/Hashed Timelock Contracts, November
2016. (Accessed on 06/25/2017).

[23] R. Patel, “What are bitcoin payment service
providers?.” https://blog.cex.io/bitcoin-dictionary/
what-is-psp-10856, October 2014. (Accessed on
06/25/2017).


